Fe b 20 03 Mean Curvature Flows and Homotopy of Maps Between Spheres Mao - Pei Tsui

نویسندگان

  • Mao-Pei Tsui
  • Mu-Tao Wang
چکیده

Let f be a smooth map between unit spheres of possibly different dimensions. We prove the global existence and convergence of the mean curvature flow of the graph of f under various conditions. A corollary is that any area-decreasing map between unit spheres (of possibly different dimensions) is homotopic to a constant map.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mean curvature flows and isotopy problems

In this note, we discuss the mean curvature flow of graphs of maps between Riemannian manifolds. Special emphasis will be placed on estimates of the flow as a non-linear parabolic system of differential equations. Several global existence theorems and applications to isotopy problems in geometry and topology will be presented. The results are based on joint works of the author with his collabor...

متن کامل

Positive Ricci Curvature

We discuss the Sasakian geometry of odd dimensional homotopy spheres. In particular, we give a completely new proof of the existence of metrics of positive Ricci curvature on exotic spheres that can be realized as the boundary of a parallelizable manifold. Furthermore, it is shown that on such homotopy spheres Σ the moduli space of Sasakian structures has infinitely many positive components det...

متن کامل

Mean Curvature Flow and Bernstein-calabi Results for Spacelike Graphs

This is a survey of our work on spacelike graphic submanifolds in pseudoRiemannian products, namely on Heinz-Chern and Bernstein-Calabi results and on the mean curvature flow, with applications to the homotopy of maps between Riemannian manifolds.

متن کامل

Se p 20 03 SEIBERG - WITTEN - FLOER STABLE HOMOTOPY TYPE OF THREE - MANIFOLDS WITH b 1 = 0

Using Furuta's idea of finite dimensional approximation in Seiberg-Witten theory, we refine Seiberg-Witten Floer homology to obtain an invariant of homology 3-spheres which lives in the S 1-equivariant graded suspension category. In particular, this gives a construction of Seiberg-Witten Floer homology that avoids the delicate transversal-ity problems in the standard approach. We also define a ...

متن کامل

A new family in the stable homotopy groups of spheres

Let $p$ be a prime number greater than three. In this paper, we prove the existence of a new family of homotopy elements in the stable homotopy groups of spheres $pi_{ast}(S)$ which is represented by $h_nh_mtilde{beta}_{s+2}in {rm Ext}_A^{s+4, q[p^n+p^m+(s+2)p+(s+1)]+s}(mathbb{Z}_p,mathbb{Z}_p)$ up to nonzero scalar in the Adams spectral sequence, where $ngeq m+2>5$, $0leq sExt}_A^{s+2,q[(s+2)p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003